
Modeling	earth-surface	dynamics	with	Landlab	

The	Landlab	development	team:	
	Jordan	Adams	(Tulane	U.)	
Nicole	Gasparini	(Tulane	U.)	

Dan	Hobley	(Univ.	of	Colorado)	
Eric	Hu@on	(CSDMS)	

Erkan	Istanbulluoglu	(Univ.	of	Washington)	
Jennifer	Knuth	(Univ.	of	Colorado)	

Sai	Siddharta	NudurupaJ	(Univ.	of	Washington)	
Greg	Tucker	(Univ.	of	Colorado)	

NATURE	

NUMERICAL	
ALGORITHM	

SOFTWARE	

DYNAMICAL	
MODEL	

2D	models	of	earth-surface	processes	

(a) (b) (c)

(d) (e)
(f)

CATCHMENT	HYDROLOGY	
(Ivanov	et	al.,	2004)	

SOIL	EROSION	
(Mitas	and	Mitasova,	1998)	

GLACIER	DYNAMICS	
(Kessler	et	al.,	2006)	

LANDSCAPE	EVOLUTION	
(Tucker	and	Hancock,	2010)	

IMPACT	CRATERING	AND	DEGRADATION	
(Howard,	2007)	

LAVA	FLOWS	
(Kelfoun	et	al.,	2009)	

What	is	Landlab?	

•  A	Python-language	programming	library	
•  Supports	efficient	crea\on	and/or	coupling	of	
2D	numerical	models	

•  Geared	toward	(but	not	limited	to)	earth-
surface	dynamics	

What	Landlab	provides	

1.  Grid	crea\on	and	management	
–  Create	a	structured	or	unstructured	grid	in	one	or	

a	few	lines	of	code	
–  A^ach	data	to	grid	elements	
•  Facilitates	staggered-grid	schemes	
•  Passing	the	grid	=	passing	the	data	

Cell

Node (interior) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

RASTER	
HEXAGONAL	

RADIAL	

VORONOI	/	DELAUNAY	

What	Landlab	provides	

2.		Coupling	of	components	
–  A	component	models	a	single	process	(e.g.,	

lithosphere	flexure,	incident	solar	radia\on,	flow	
rou\ng	across	terrain)	

–  Components	have	a	standard	interface	and	can	
be	combined	by	wri\ng	a	short	Python	script	

–  Save	development	\me	by	re-using	components	
wri^en	by	others	

What	Landlab	provides	

3.		Input	and	output	
–  Read	model	parameters	from	a	forma^ed	text	

file		
–  Read	in	digital	terrain	data	(e.g.,	DEMs)	è	grid	
–  Write	gridded	output	to	files	(netCDF	format)	
–  Plot	data	using	Matplotlib	graphics	library	

What	Landlab	provides	

4.		Support	for	cellular-automaton	modeling	
–  CellLab-CTS:	Con\nuous-\me	stochas\c	CA	

model	“engine”	

Cell States

fluid grain

Transitions representing motion

up down

left

right

Cell pairs without transition

2 seconds 200 seconds

(Tucker	et	al.,	2016	Geoscien\fic	Model	Development)	

Examples	of	Landlab-built	models	

(Source:	Francis	Rengers,	USGS)	

Storm	runoff	pa^erns	in	the	
Transverse	Ranges	

(Source:	Francis	Rengers,	USGS)	

*Note scale
differences !

Storm duration!

Application in a real world setting: Spring Creek, CO.!

Eleva\on	(m
)	

(source:	Jordan	Adams,	Tulane	University)	

Cellular	automaton	model	of	
weathering	along	fractures	

Why	do	strike-slip	faults	some\mes	show	
distributed	shear,	and	some\mes	not?	

NEAR-FAULT	SHEAR	INFLUENCES	LANDFORMS	

SAN	ANDREAS	FAULT,	MECCA	HILLS,	CA	
(Source:	Harrison	Gray,	CU-Boulder)	

VALLEY	WIDENING	BY	
LATERAL	BEDROCK	
EROSION	

(Source:	Abby	Langston)	

Weathering	&	disturbance	similar	to	slip	rate	

W’	=	D’	=	1	

VEGETATION	 RESOURCE	

Climate	Change	Experiments	#1	

Using	Landlab	grids	

•  Aim:	make	it	easier	
to	set	up	a	2D	
numerical	model	
grid	

•  Grid	data	and	
func\ons	contained	
in	a	single	Python	
object	

Slingerland,	Harbaugh,	and	Furlong	(1994)	

Currently	four	grid	types	are	available:	

•  RasterModelGrid

•  VoronoiModelGrid

•  HexModelGrid

•  RadialModelGrid

	

Cell

Node (interior) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Example:	crea\ng	a	grid	
>>> from landlab import RasterModelGrid
>>> rg = RasterModelGrid((4, 5), 10.0)
>>> rg.number_of_nodes
20

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Grid	elements:	nodes	

>>> rg.number_of_node_rows
4
>>> rg.number_of_node_columns

5
>>> rg.x_of_node
array([0., 10., 20., 30., 40., 0., 10., 20., 30., 40., 0.,
 10., 20., 30., 40., 0., 10., 20., 30., 40.])
>>> rg.y_of_node
array([0., 0., 0., 0., 0., 10., 10., 10., 10., 10., 20.,

 20., 20., 20., 20., 30., 30., 30., 30., 30.])

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Node	numbering	

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

0	 1	 2	 3	 4	

5	 6	 7	 8	 9	

10	 11	 12	 13	 14	

15	 16	 17	 18	 19	

Nodes	are	
always	
sorted	by	
y	coordinate	
	
Nodes	with	
equal	y	are	
sorted	by	x	

Core	and	boundary	nodes	
•  Core	nodes	
•  Boundary	nodes	

•  Open	
•  Fixed	value	
•  Fixed	gradient	
•  Looped	

•  Closed	

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Grid	elements:	links	

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Link	=	
directed	line	
segment	
connecBng	
two	adjacent	
nodes	
	
Link	
direcBon	is	
toward	
upper	right	
half-space	by	
default	

Grid	elements:	links	

>>> rg.number_of_links
31
>>> rg.node_at_link_head

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11, 12, 13,
 14, 11, 12, 13, 14, 15, 16, 17, 18, 19, 16, 17, 18, 19])
>>> rg.node_at_link_tail
array([0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 5, 6, 7, 8,
 9, 10, 11, 12, 13, 10, 11, 12, 13, 14, 15, 16, 17, 18])

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Tail	
node	

Head	
node	

Link	numbering	

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

0	 1	 2	 3	

4	 5	 6	 7	 8	

9	 10	 11	 12	

13	 14	 15	 16	 17	

18	 19	

Links	are	
sorted	by	
mid-point	
y	coordinate	
	
Links	with	
equal	y	are	
sorted	by	x	

20	 21	

22	 23	 24	 25	 26	

27	 28	 29	 30	

Ac\ve	and	inac\ve	links	

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

0	 1	 2	 3	

4	 5	 6	 7	 8	

9	 10	 11	 12	

13	 14	 15	 16	 17	

18	 19	

ACTIVE:	
Connects	two	core	nodes	OR	
a	core	and	an	open	
boundary	
	
INACTIVE:	
Connects	to	one	or	more	
closed	boundary	nodes	OR	
Connects	two	open	
boundary	nodes	

20	 21	

22	 23	 24	 25	 26	

27	 28	 29	 30	

Grid	elements:	cells	

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Cell	=	
polygon	
bounded	by	
faces	and	
containing	a	
node	
	
Perimeter	
nodes	do	not	
have	cells	

Grid	elements:	cells	

>>> rg.number_of_cells
6
>>> rg.area_of_cell

array([100., 100., 100., 100., 100., 100.])
>>> rg.faces_at_cell
array([[4, 7, 3, 0],
 [5, 8, 4, 1],
 [6, 9, 5, 2],
 [11, 14, 10, 7],

 [12, 15, 11, 8],
 [13, 16, 12, 9]])
>>> rg.node_at_cell
array([6, 7, 8, 11, 12, 13])

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

Cells	have:	
•  Area	
•  Faces	
•  A	node	

Cell	numbering	

Cell

Node (core) FaceActive Link

Inactive LinkNode (open boundary)

Node (closed boundary)

0	 1	 2	

3	 4	 5	

Cells	are	
sorted	by	
y	coordinate	
	
Cells	with	
equal	y	are	
sorted	by	x	

Fields:	a^aching	data	to	the	grid	

•  A	field	is	a	NumPy	array	containing	data	that	are	
associated	with	a	par\cular	type	of	grid	element	
(typically	nodes	or	links)	

•  Fields	are	1D	arrays	
•  Values	correspond	to	the	element	with	the	same	ID.	
Example:	value	5	of	a	node	field	belongs	to	node	#5.	

•  Fields	are	“a^ached”	to	the	grid	(the	grid	object	
includes	dic\onaries	lis\ng	all	the	fields)	

•  Fields	have	names	(as	strings)	
•  Create	fields	with	grid	func\ons	add_zeros,	
add_ones,	or	add_empty

Fields:	example	

>>> h = rg.add_zeros('water__depth', at='node')
>>> h
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0.])
>>> h[1] = 100.0
>>> h
array([0., 100., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0.])
>>> rg.at_node['water__depth']
array([0., 100., 0., 0., 0., 0., 0., 0., 0.,
 0., 0., 0., 0., 0., 0., 0., 0., 0.,
 0., 0.])

Reading	raster	digital	terrain	data	

Landlab’s	read_esri_ascii	func\on:	
•  Reads	data	from	ESRI	ASCII	raster	file	
•  Creates	a	RasterModelGrid	and	a	
data	field	

•  Also:	read/write	netCDF	files	
•  Example:	
>>> from landlab.io import read_esri_ascii
>>> (mg, z) = read_esri_ascii('west_bijou_gully.asc',

name=’elevation')

Staggered-grid	schemes:	
Scalars	at	nodes,	vectors	at	links	

Slingerland,	Harbaugh,	and	Furlong	(1994)	

The mathematical problem

@⌘

@t

= �rq
s

⌘ = land-surface elevation

t = time

q = sediment flux [L

2

/T]

q = �Dr⌘

D = transport coe�cient [L

2

/T]

Linear	diffusion	example	

s	

s	

Each interior node i lies within a cell whose

surface area is A

i

.

We can write mass balance for cell i in terms

of sediment fluxes across each of its four

faces:

d⌘

i

dt

=

1

A

i

4X

j=1

�xq

j

ηi ...

...

...

...... ...

......

The	numerical	problem:		
finite-volume	solu\on	scheme	

ηi ...

...

...

...... ...

......

qwest

d⌘

i

dt

=

�x

A

i

[q
west

...

ηi ...

...

...

...... ...

......

qwest qeast

d⌘

i

dt

=

�x

A

i

[q
west

� q
east

...

ηi ...

...

...

...... ...

......

qwest qeast

qsouth

d⌘

i

dt

=

�x

A

i

[q
west

� q
east

+ q
south

...

ηi ...

...

...

...... ...

......

qwest qeast

qsouth

qnorth

Flux depends on gradient, which is

calculated between adjacent nodes:

q
west

= �D

@⌘

@x

�����
(west face)

⇡ �D

⌘

i

� ⌘

west

�x

!

ηiηwest

link from ηwest to ηi

Calcula\ng	the	gradient	of	a	scalar	field	

>>> deta_dx = rg.calc_grad_at_link(eta)

	
•  eta	is	a	scalar	defined	at	nodes	
•  One	value	of	deta_dx	for	every	link	
•  Posi\ve	when	eta	increases	in	the	link	direc\on	
•  Nega\ve	when	eta	decreases	in	the	link	direc\on	

ηiηwest

link from ηwest to ηi

Calcula\ng	the	divergence	of	a	gradient	field	

>>> q = -D * deta_dx
>>> dqdx = rg.calc_flux_div_at_node(q)

	
•  q	is	a	vector	defined	at	links	
•  One	value	of	dqdx	for	every	node	
•  Posi\ve	when	net	flux	is	outwards	

ηi ...

...

...

...... ...

......

qwest qeast

qsouth

qnorth

Q:	What	if	you	need	a	scalar	value	at	a	link?		
A:	Landlab’s	mapping	func\ons	

	
	
	
>>>	h_link	=	rg.map_mean_of_link_nodes_to_link(h)	
	
	
	
	
>>>	h_link	=	rg.map_value_at_max_node_to_link(w,	h)	

2.0	 5.0	3.5	

w	=	10.2	
h	=	2.0	 2.0	 w	=	9.7	

h	=	5.0	

Components	

•  A	component	is	a	self-contained	piece	of	code	
that	typically	represents	one	process	

•  Components	have	a	standardized	interface	that	
allows	them	to	be	easily	coupled	with	one	
another	using	a	Python	script	

•  Components	are	normally	implemented	as	
Python	classes.	For	example:	

>>> ld = LinearDiffuser(rg, linear_diffusivity=0.01)
>>> ld.run_one_step(dt=1.0)

The	components	
•  Describe	individual	
surface	processes	

•  “Plug	&	Play”	
•  Standard	interface	
•  Use	the	library,	or	BYO	

Documenta\on:	Users’	Guide	

hJps://github.com/landlab/landlab/wiki/User-Guide	

Documenta\on:	Reference	/	API	

hJp://landlab.readthedocs.io	

hJps://github.com/landlab	

DocumentaBon:	source	code,	tutorials,	etc.,	publicly	available	on	GitHub	

hJps://github.com/landlab/landlab/wiki/Tutorials	
	

If	you	s\ll	need	to	install:	

h^p://landlab.github.io	
	
è Install	

Follow	instruc\ons	
	

How	to	update	Landlab	

In	terminal	window	or	command	prompt:	
	
	pip	uninstall	landlab	
		
	conda	install	landlab	–c	landlab	

How	to	download	and	run	tutorials	

•  Go	to:	
h^ps://github.com/landlab/landlab/wiki/Tutorials	

•  Click:	
	 	Click	here	to	download	all	the	tutorials	

•  Save	ZIP	
•  Double-click	to	unpack	
•  In	terminal	or	command	window,	navigate	to	new	
folder	

•  Enter:	jupyter notebook
•  Shix-Enter	to	move	through	each	cell	

